(19) 日本国特許庁(JP)

(12) 特許公報(B2)

(11) 特許番号

特許第6809691号 (P6809691)

(45) 発行日 令和3年1月6日 (2021.1.6)

- (24) 登録日 令和2年12月14日 (2020.12.14)
- (51) Int.Cl. F I **GO1B 21/32 (2006.01)** GO1B 21/32 **EO1D 22/00 (2006.01)** EO1D 22/00 A

請求項の数 11 (全 21 頁)

特願2016-146016 (P2016-146016)	(73)特許権者	皆 592254526
平成28年7月26日 (2016.7.26)		学校法人五島育英会
特開2018-17533 (P2018-17533A)		東京都渋谷区道玄坂1丁目10番7号
平成30年2月1日 (2018.2.1)	(74)代理人	110000198
令和1年7月1日 (2019.7.1)		特許業務法人湘洋内外特許事務所
	(72)発明者	関屋 英彦
2項適用 平成28年2月20日に関		東京都世田谷区等々力八丁目15番1号
木村健太郎、小西拓洋、三木千壽が		東京都市大学総合研究所内
第72巻、第1号、61頁~74頁	(72)発明者	三木 千壽
		東京都世田谷区玉堤一丁目28番1号 東
		京都市大学内
	審査官	國田 正久
		最終頁に続く
	特願2016-146016 (P2016-146016) 平成28年7月26日 (2016.7.26) 特開2018-17533 (P2018-17533A) 平成30年2月1日 (2018.2.1) 令和1年7月1日 (2019.7.1) 2 項適用 平成28年2月20日に関 木村健太郎、小西拓洋、三木千壽が 第72巻、第1号、61頁~74頁	特願2016-146016 (P2016-146016) 平成28年7月26日 (2016.7.26) 特開2018-17533 (P2018-17533A) 平成30年2月1日 (2018.2.1) 令和1年7月1日 (2019.7.1) 2 項適用 平成28年2月20日に関 木村健太郎、小西拓洋、三木千壽が 第72巻、第1号、61頁~74頁 審査官

(54) 【発明の名称】計測装置、計測方法、および計測システム

- (57)【特許請求の範囲】
- 【請求項1】

移動体が移動する構造物に設置されたセンサによって測定された角速度から、前記構造 物の自由振動周波数成分の角速度を抽出し、抽出した角速度を積分して算出した角度から 、角度の境界条件を特定する境界条件特定部と、

前記センサによって測定された角速度を積分して、角度を算出する積分部と、

前記積分部が算出した角度を、前記境界条件特定部が特定した角度の境界条件を満たすように補正する補正部と、

を有<u>し、</u>

<u>前記境界条件特定部は、抽出した角速度を積分して算出した角度の、前記構造物に外力</u>10 <u>が作用したときの第1の時刻における角度と、前記構造物に作用した外力が解除されたと</u> きの第2の時刻における角度とを境界条件とする、

ことを特徴とする計測装置。

【請求項2】

請求項<u>1</u>に記載の計測装置であって、

前記センサによって測定された加速度から、前記構造物の自由振動周波数成分の加速度を抽出し、抽出した加速度を積分して算出した速度と、その速度を積分して算出した変位とから、速度の境界条件と変位の境界条件とを特定する速度変位境界条件特定部と、

前記センサによって測定された加速度を積分して、速度と変位とを算出する速度変位積 分部と、 をさらに有することを特徴とする計測装置。

【請求項3】

請求項<u>2</u>に記載の計測装置であって、

前記速度変位境界条件特定部は、抽出した加速度を積分して算出した速度と、その速度 を積分して算出した変位との、前記構造物に外力が作用したときの第1の時刻における速 度および変位と、前記構造物に作用した外力が解除されたときの第2の時刻における速度 および変位とを境界条件とする、

ことを特徴とする計測装置。

【請求項4】

請求項2または3に記載の計測装置であって、

前記センサは、3軸方向の角速度と3軸方向の加速度とを検出する6軸の慣性センサで ある、

ことを特徴とする計測装置。

【請求項5】

請求項2~4のいずれか一項に記載の計測装置であって、

前記速度変位補正部によって補正された変位から、前記構造物の異常を検出する異常検出部、

をさらに有することを特徴とする計測装置。

【請求項6】

請求項1~<u>5</u>のいずれか一項に記載の計測装置であって、

前記補正部によって補正された角度から、前記構造物の異常を検出する異常検出部、

をさらに有することを特徴とする計測装置。

【請求項7】

請求項<u>2</u>~<u>4</u>のいずれか一項に記載の計測装置であって、

前記速度変位積分部は、前記構造物に作用した外力の大きさに応じて、変位の算出を止める、

ことを特徴とする計測装置。

【請求項8】

請求項<u>7</u>に記載の計測装置であって、

前記速度変位補正部は、前記構造物に作用した外力の大きさに応じて、第2の時刻以降の速度をゼロに補正する、

ことを特徴とする計測装置。

【請求項9】

請求項1~<u>8</u>のいずれか一項に記載の計測装置であって、

前記積分部は、前記構造物に作用した外力の大きさに応じて、角度の算出を止める、 ことを特徴とする計測装置。

【請求項10】

40

10

20

30

移動体が移動する構造物に設置されたセンサによって測定された角速度から、前記構造 物の自由振動周波数成分の角速度を抽出し、抽出した角速度を積分して算出した角度から 、角度の境界条件を特定する境界条件特定ステップと、

前記センサによって測定された角速度を積分して、角度を算出する積分ステップと、 前記積分ステップにて算出された角度を、前記境界条件特定ステップにて特定された角 度の境界条件を満たすように補正する補正ステップと、

を有<u>し、</u>

<u>前記境界条件特定ステップは、抽出した角速度を積分して算出した角度の、前記構造物</u> <u>に外力が作用したときの第1の時刻における角度と、前記構造物に作用した外力が解除されたときの第2の時刻における角度とを境界条件とする、</u>

(2)

ことを特徴とする計測方法。

【請求項11】

移動体が移動する構造物に設置されるセンサと、

前記センサによって測定された角速度から、前記構造物の自由振動周波数成分の角速度 を抽出し、抽出した角速度を積分して算出した角度から、角度の境界条件を特定する境界 条件特定部と、前記センサによって測定された角速度を積分して、角度を算出する積分部 と、前記積分部が算出した角度を、前記境界条件特定部が特定した角度の境界条件を満た すように補正する補正部と、を有する計測装置と、

を有し、

前記境界条件特定部は、抽出した角速度を積分して算出した角度の、前記構造物に外力 10 が作用したときの第1の時刻における角度と、前記構造物に作用した外力が解除されたと きの第2の時刻における角度とを境界条件とする、

ことを特徴とする計測システム。

【発明の詳細な説明】

【技術分野】

[0001]

本発明は、計測装置、計測方法、および計測システムに関するものである。

【背景技術】

[0002]

非特許文献1には、数値積分の際の境界条件において、速度の時間平均値が0になると 20 いう仮定を用いて橋梁の変位応答を算出する「初期速度推定法(Initial velocity estimation method)」が開示されている。

【先行技術文献】

【非特許文献】

【 0 0 0 3 】

【非特許文献1】Ki Tae Park、外3名、"The determination of bridge displacement using measured acceleration"、Engineering Structure、Vol.27、pp.371 378、2005年

【発明の概要】

【発明が解決しようとする課題】

[0004]

30

しかし、非特許文献1には、構造物に生じる角速度から角度を算出することに関しては 何ら記載されていない。

【0005】

また、非特許文献1には、構造物に外力が作用する時間帯(以下、「強制応答区間」と称すことがある)を特定する方法が開示されていないため、数値積分の積分範囲を特定す ることに問題がある。

[0006]

そこで本発明は、構造物に生じる角速度から角度を精度よく算出する技術を提供することを目的とする。

【課題を解決するための手段】

[0007]

本願は、上記課題の少なくとも一部を解決する手段を複数含んでいるが、その例を挙げ るならば、以下の通りである。上記課題を解決すべく、本発明の一態様に係る計測装置は 、移動体が移動する構造物に設置されたセンサによって測定された角速度から、前記構造 物の自由振動周波数成分の角速度を抽出し、抽出した角速度を積分して算出した角度から 、角度の境界条件を特定する境界条件特定部と、前記センサによって測定された角速度を 積分して、角度を算出する積分部と、前記積分部が算出した角度を、前記境界条件特定部 が特定した角度の境界条件を満たすように補正する補正部と、を有することを特徴とする

また、上記の計測装置においては、前記境界条件特定部は、抽出した角速度を積分して 算出した角度の、前記構造物に外力が作用したときの第1の時刻における角度と、前記構 造物に作用した外力が解除されたときの第2の時刻における角度とを境界条件とする、こ とを特徴とするものであってもよい。

【 0 0 0 9 】

また、上記の計測装置においては、前記センサによって測定された加速度から、前記構造物の自由振動周波数成分の加速度を抽出し、抽出した加速度を積分して算出した速度と、その速度を積分して算出した変位とから、速度の境界条件と変位の境界条件とを特定する速度変位境界条件特定部と、前記センサによって測定された加速度を積分して、速度と変位とを算出する速度変位積分部と、前記速度変位積分部が算出した速度を、前記速度変位境界条件特定部が特定した速度の境界条件を満たすように補正し、前記速度変位境界条件特定部が特定した変位の境界条件を満たすように補正する速度変位補正部と、をさらに有することを特徴とするものであってもよい。 【0010】

また、上記の計測装置においては、前記速度変位境界条件特定部は、抽出した加速度を 積分して算出した速度と、その速度を積分して算出した変位との、前記構造物に外力が作 用したときの第1の時刻における速度および変位と、前記構造物に作用した外力が解除さ れたときの第2の時刻における速度および変位とを境界条件とする、ことを特徴とするも のであってもよい。

[0011]

また、上記の計測装置においては、前記センサは、3軸方向の角速度と3軸方向の加速 度とを検出する6軸の慣性センサである、ことを特徴とするものであってもよい。

【 0 0 1 2 】

また、上記の計測装置においては、前記速度変位補正部によって補正された変位から、 前記構造物の異常を検出する異常検出部、をさらに有することを特徴とするものであって もよい。

[0013]

また、上記の計測装置においては、前記補正部によって補正された角度から、前記構造物の異常を検出する異常検出部、をさらに有することを特徴とするものであってもよい。 【0014】

また、上記の計測装置においては、前記速度変位積分部は、前記構造物に作用した外力の大きさに応じて、変位の算出を止める、ことを特徴とするものであってもよい。 【0015】

また、上記の計測装置においては、前記速度変位補正部は、前記構造物に作用した外力 の大きさに応じて、第2の時刻以降の速度をゼロに補正する、ことを特徴とするものであ ってもよい。

【0016】

また、上記の計測装置においては、前記積分部は、前記構造物に作用した外力の大きさに応じて、角度の算出を止める、ことを特徴とするものであってもよい。

【0017】

また、本発明の一態様に係る計測方法は、移動体が移動する構造物に設置されたセンサ によって測定された角速度から、前記構造物の自由振動周波数成分の角速度を抽出し、抽 出した角速度を積分して算出した角度から、角度の境界条件を特定する境界条件特定ステ ップと、前記センサによって測定された角速度を積分して、角度を算出する積分ステップ と、前記積分ステップにて算出された角度を、前記境界条件特定ステップにて特定された 角度の境界条件を満たすように補正する補正ステップと、を有することを特徴とする。 【0018】

また、本発明の一態様に係る計測システムは、移動体が移動する構造物に設置されるセンサと、前記センサによって測定された角速度から、前記構造物の自由振動周波数成分の 角速度を抽出し、抽出した角速度を積分して算出した角度から、角度の境界条件を特定す

20

10

50

る境界条件特定部と、前記センサによって測定された角速度を積分して、角度を算出する 積分部と、前記積分部が算出した角度を、前記境界条件特定部が特定した角度の境界条件 を満たすように補正する補正部と、を有する計測装置と、を有することを特徴とする。 【発明の効果】

【0019】

本発明によれば、構造物に生じる角速度から、角度を精度よく算出することができる。 上記した以外の課題、構成、および効果は、以下の実施形態の説明により明らかにされる

【図面の簡単な説明】

[0020]

【図1】第1の実施の形態に係る計測システムを説明する図である。

【図2】床版を省略した橋梁の斜視図である。

- 【図3】計測装置の機能ブロック構成例を示した図である。
- 【図4】センサが検出する角速度の一例を示した図である。

【図5】センサが検出する角速度の周波数成分の一例を示した図である。

- 【図6】境界条件特定部の動作例を説明する図である。
- 【図7】積分部および補正部の動作例を説明する図である。
- 【図8】積分部が算出した角度のドリフト除去の例を説明する図である。

【図9】境界条件特定部、積分部、および補正部の処理例を説明する図である。

- 【図10】計測装置の動作例を示したフローチャートである。
- 【図11】第2の実施の形態に係る計測装置の機能ブロック構成例を示した図である。

【図12】速度変位境界条件特定部、速度変位積分部、および速度変位補正部の処理例を 説明する図である。

- 【図13】第3の実施の形態に係る計測装置の機能ブロック構成例を示した図である。
- 【図14】積分部の動作例を説明する図である。

【図15】速度変位積分部および速度変位補正部の動作例を説明する図である。

【発明を実施するための形態】

【0021】

以下、本発明の実施の形態を、図面を参照して説明する。

[0022]

[第1の実施の形態]

図1は、第1の実施の形態に係る計測システムを説明する図である。計測システムは、 計測装置1と、センサ2a,2bとを有している。計測装置1とセンサ2a,2bは、例 えば、携帯電話の無線ネットワークおよびインターネット等の通信ネットワーク3を介し て、通信を行うことができる。

【0023】

図1には、橋梁4と、通過検出装置5と、地震計6とが示してある。橋梁4は、橋梁4 に作用する外力によって変形する。例えば、橋梁4は、車両等の移動体による通過や、地 震などによって撓んだりねじれたりする。

【0024】

センサ2 a , 2 b は、角速度を検出するセンサである。センサ2 a , 2 b は、以下で詳述するが、橋梁4の支承部に設置され、橋梁4に生じる角速度を検出する。センサ2 a , 2 b は、検出した角速度の信号(以下では、単に角速度と称することがある)を、通信ネットワーク3を介して、計測装置1に送信する。

[0025]

計測装置1は、以下で詳述するが、センサ2a,2bから送信される角速度に基づいて、外力によって生じる橋梁4のねじれ(橋梁4の変位した角度、以下では、変位角度または単に角度と呼ぶことがある)を算出する。そして、計測装置1は、算出した変位角度から、橋梁4の異常を判定する。例えば、計測装置1は、算出した変位角度が所定の閾値を超えている場合、橋梁4は異常であると判定する。すなわち、計測装置1は、車両通過や

20

10

地震によって変形した橋梁4が異常であるか否か判定する。

[0026]

通過検出装置5は、橋梁4を通過する車両を撮像装置で撮影し、撮影した車両の映像か ら、車両の橋梁4への進入時刻および橋梁4からの退出時刻を検出する。すなわち、通過 検出装置5は、車両通過による、橋梁4に外力が作用した時間帯(強制応答区間)を検出 する。通過検出装置5は、検出した車両の進入時刻および退出時刻を、通信ネットワーク 3を介して計測装置1に送信する。

【0027】

地震計6は、橋梁4の周辺で発生する地震を検出し、地震が発生した地震発生時刻と、 地震がおさまった地震終了時刻とを検出する。すなわち、地震計6は、地震による、橋梁 10 4に外力が作用した時間帯を検出する。地震計6は、検出した地震発生時刻および地震終 了時刻を、通信ネットワーク3を介して計測装置1に送信する。 【0028】

上記の車両進入時刻および地震発生時刻は、橋梁4に外力が作用したとき(作用し始め たとき)の時刻である。以下では、橋梁4に外力が作用したときの時刻を「第1の時刻」 と呼ぶことがある。また、上記の車両退出時刻および地震終了時刻は、橋梁4に作用した 外力が解除されたときの時刻である。以下では、橋梁4に作用した外力が解除されたとき の時刻を「第2の時刻」と呼ぶことがある。なお、橋梁4に外力が作用する時間帯は、第 1の時刻と第2の時刻との間となる。言い換えれば、強制応答区間は、第1の時刻と第2 の時刻との間となる。

【0029】

図1の例では、通過検出装置5および地震計6によって、橋梁4に外力が作用する時間 帯を計測したが、橋梁4に外力が作用する時間帯を計測する方法は、これに限られない。 【0030】

例えば、計測装置1は、センサ2a,2bから送信される角速度から、車両進入時刻お よび車両退出時刻を計測してもよい。具体的には、図1において、車両が左方向から右方 向に通過したとする。この場合、センサ2aからは、車両の進入によって生じた角速度が 検出され、センサ2bからは、車両の退出によって生じた角速度が検出される。計測装置 1は、この検出された角速度から、車両進入時刻および車両退出時刻を計測する。 【0031】

また、計測装置1は、センサ2a,2bから送信される角速度から、地震発生時刻および地震終了時刻を計測してもよい。具体的には、地震が発生したとき、センサ2a,2bからは、地震によって生じた角速度が検出される。計測装置1は、この検出された角速度から、地震発生時刻および地震終了時刻を計測する。

【0032】

また、橋梁4に外力が作用する時間帯を計測するため、加速度センサを、橋梁4の車両 移動方向の両端(例えば、図1に示すセンサ2a,2bの位置)に設置してもよい。計測 装置1は、角速度の場合と同様に、橋梁4に設置された加速度センサの加速度から、第1 の時刻および第2の時刻を計測する。

【0033】

さらに、撮像装置で撮影した橋梁4を通過する車両の映像を、計測装置1または通信ネットワーク3上のコンピュータ(図示せず)に送信してもよい。そして、計測装置1また は通信ネットワーク3上のコンピュータが、撮像装置から送信された映像から、第1の時 刻および第2の時刻を計測してもよい。

[0034]

図2は、床版を省略した橋梁4の斜視図である。図2において、図1と同じものには同じ符号が付してある。

【0035】

図2に示すように、センサ2a~2dは、橋梁4の4隅の支承部に設置される。なお、 センサの設置数は、図2の例に限られない。センサは、少なくとも1つ設置すればよい。

30

20

これによっても、計測装置1は、外力の作用によって生じる橋梁4の変位角度を算出でき る。

【0036】

以下では、説明を簡単にするため、計測装置1は、センサ2aの角速度を用いて橋梁4 の異常を判定するとする。

【0037】

図3は、計測装置1の機能ブロック構成例を示した図である。図3に示すように、計測 装置1は、制御部11と、通信部12と、記憶部13と、出力部14と、操作部15と、 を有している。

【 0 0 3 8 】

10

制御部11は、以下で詳述するが、橋梁4に設置されたセンサ2aから出力される角速 度に基づいて、橋梁4の異常を判定する。

【 0 0 3 9 】

通信部12は、通信ネットワーク3を介して、センサ2aから、角速度を受信する。センサ2aから出力される角速度は、例えば、デジタル信号である。通信部12は、センサ2aから受信した角速度を制御部11に出力する。

[0040]

図4は、センサ2aが検出する角速度の一例を示した図である。図4に示すグラフG1 の横軸は、時間を示している。グラフG1の縦軸は、角速度を示している。

【0041】

グラフG1に示す波形W1は、橋梁4に設置されたセンサ2aが検出した角速度の波形 を示している。通信部12は、グラフG1に示す波形W1の角速度を受信(実際は、デジ タル信号の角速度を受信)し、制御部11へ出力する。

【0042】

図5は、センサ2aが検出する角速度の周波数成分の一例を示した図である。図4に示 すグラフG11の横軸は、周波数を示している。グラフG11の縦軸は、パワースペクト ル密度を示している。グラフG11の波形W11は、センサ2aが検出した角速度の周波 数特性を示し、例えば、図4に示した波形W1の周波数特性を示している。

【0043】

橋梁4の振動には、車両の通過や地震等による、外力による応答(強制応答)の他に、 30 橋梁4の振動(自由振動)がある。自由振動によるセンサ2aの角速度の周波数(自由振 動周波数成分)は、橋梁4の長さや材質、構造等によって変わるが、例えば、グラフG1 1の点線枠A1に示すように、2.0~5.0Hzである。

[0044]

一方、車両通過や地震等による、外力による周波数(強制応答周波数成分)は、例えば、点線枠A2に示すように、1.0Hz以下である。つまり、橋梁4の自由振動周波数成分と強制応答周波数成分は、点線枠A1,A2に示すように異なる。以下で詳述するが、計測装置1は、点線枠A1に示す橋梁4の自由振動周波数成分の角速度から、角度の境界条件を特定する。

[0045]

図3の説明に戻る。通信部12は、通信ネットワーク3を介して、通過検出装置5から 出力される第1の時刻および第2の時刻を受信する。また、通信部12は、通信ネットワ ーク3を介して、地震計6から出力される第1の時刻および第2の時刻を受信する。通信 部12は、受信した第1の時刻および第2の時刻を制御部11に出力する。

【0046】

記憶部13は、制御部11が計算処理や制御処理を行うためのプログラムやデータ等を 記憶している。また、記憶部13は、制御部11が所定のアプリケーション機能を実現す るためのプログラムやデータ等を記憶している。各種のプログラムやデータ等は、あらか じめ不揮発性の記録媒体に記憶されていてもよいし、制御部11が通信ネットワーク3を 介してサーバーから受信して記憶部13に記憶させてもよい。記憶部13は、例えば、R

OM (Read Only Memory) やフラッシュROM、RAM (Random Access Memory) 等の各種IC (Integrated Circuit) メモリーやハードディスク、メモリーカードなどの記録媒体等により構成される。また、記憶部13には、通信部12によって受信された角速度が記憶される。

【0047】

出力部14は、制御部11の異常判定結果等を、例えば、表示装置に出力する。

[0048]

操作部15は、ユーザからの操作データを取得し、制御部11に送信する。

【0049】

制御部11について詳述する。制御部11は、外力情報取得部21と、境界条件特定部 10 22と、積分部23と、補正部24と、異常検出部25とを有している。制御部11の各 部は、例えば、記憶部13に記憶されたプログラムを実行するCPU (Central Processi ng Unit)によって、その機能が実現される。なお、制御部11の各部は、ASIC (Appl ication Specific Integrated Circuit)などのカスタムIC (Integrated Circuit)で その機能を実現してもよいし、CPUとASICとによって、その機能を実現してもよい

。 【0050】

外力情報取得部21は、通信部12によって受信された第1の時刻と第2の時刻とを取 得する。

[0051]

図4に示した時刻t1は、外力情報取得部21が取得した第1の時刻の例を示している。時刻t2は、外力情報取得部21が取得した第2の時刻の例を示している。従って、図4の時刻t1と時刻t2との間の区間は、橋梁4に外力が作用した強制応答区間である。 なお、強制応答区間以外の区間、すなわち、橋梁4に外力が作用していないときの区間は、自由振動区間である。

【0052】

境界条件特定部22には、通信部12によって受信された、センサ2aの角速度が入力 される。また、境界条件特定部22には、通信部12によって受信された、第1の時刻お よび第2の時刻が入力される。

[0053]

境界条件特定部22は、センサ2aによって検出された角速度から、橋梁4の自由振動 周波数成分の角速度を抽出する。境界条件特定部22は、抽出した角速度を数値積分(以 下、単に積分と称することがある)して角度を算出し、算出した角度から、角度の境界条 件を特定する。具体的には、境界条件特定部22は、抽出した自由振動周波数成分の角速 度を積分して角度を算出し、算出した角度の第1の時刻における角度と、第2の時刻にお ける角度とを、後述する積分部23の積分の、角度の境界条件とする。

【0054】

図6は、境界条件特定部22の動作例を説明する図である。図6に示すグラフG21~ G23の横軸は、時間を示している。グラフG21,G22の縦軸は、角速度を示し、グ ラフG23の縦軸は、角度を示している。図6に示す時刻t1および時刻t2は、外力情 報取得部21が取得した第1の時刻および第2の時刻を示している。 【0055】

グラフG21の波形W21は、センサ2aによって検出された角速度を示している。す なわち、波形W21は、境界条件特定部22に入力される角速度の波形を示している。な お、波形W21は、図4に示した波形W1(通信部12が受信した角速度の波形)である

[0056]

境界条件特定部 2 2 は、例えば、 F I R (Finite Impulse Response) や F F T (Fast Fourier Transform)による B P F (Band Pass Filter)によって、入力した角速度から 、自由振動周波数成分を抽出する。例えば、図 5 の点線枠 A 1 に示したように、橋梁 4 の 50

10

20

30

自由振動周波数成分は、2.0~5.0Hzであるので、境界条件特定部22は、入力した角速度から、2.0~5.0Hzの角速度を抽出する。グラフG22の波形W22は、 グラフG21の波形W21の自由振動周波数成分を示し、境界条件特定部22が抽出した 、自由振動周波数成分の角速度を示している。

【0057】

境界条件特定部22は、センサ2aから出力された角速度の、自由振動周波数成分(波 形W22)を抽出すると、抽出した自由振動周波数成分の角速度を積分する。すなわち、 境界条件特定部22は、橋梁4の自由振動による変位角度を算出する。グラフG23の波 形W23は、グラフG22の波形W22を積分した波形を示し、境界条件特定部22によ って算出された、橋梁4の自由振動による変位角度を示している。

【0058】

境界条件特定部22は、橋梁4の自由振動による変位角度を算出すると、外力情報取得 部21によって取得された第1の時刻および第2の時刻での変位角度を特定し、特定した 変位角度を境界条件とする。

【 0 0 5 9 】

例えば、グラフG23に示す時刻t1および時刻t2は、外力情報取得部21によって 取得された第1の時刻および第2の時刻を示している。グラフG23に示すように、第1 の時刻である時刻t1での角度を「1」、第2の時刻である時刻t2での角度を「2 」とすると、境界条件特定部22は、次の境界条件を特定する。

[0060]

時刻 t 1 における角度 の境界条件: = 1 時刻 t 2 における角度 の境界条件: = 2

[0061]

図3の説明に戻る。積分部23には、通信部12によって受信された、センサ2aの角 速度が入力される。積分部23は、入力されたセンサ2aの角速度を積分して、外力によ る橋梁4の変位角度を算出する。

【0062】

補正部24は、境界条件特定部22によって特定された角度の境界条件を満たすように 、積分部23によって算出された変位角度を補正する。

【0063】

図7は、積分部23および補正部24の動作例を説明する図である。図7に示すグラフG31,G32の横軸は、時間を示している。グラフG31の縦軸は、角速度を示し、グラフG32の縦軸は、角度を示している。図6に示す時刻t1および時刻t2は、外力情報取得部21が取得した第1の時刻および第2の時刻を示している。

【0064】

グラフG31の波形W31は、センサ2aによって検出された角速度を示している。す なわち、波形W31は、積分部23に入力される角速度の波形を示している。なお、波形 W31は、図4に示した波形W1(通信部12が受信した角速度の波形)である。 【0065】

積分部23は、入力された角速度(波形W31)を積分し、角度を算出する。補正部2 40 は、積分部23によって算出された角度が、境界条件特定部22によって特定された角度 の境界条件を満たすように補正する。

【0066】

例えば、グラフG32の波形W32は、積分部23によって算出された橋梁4の角度の 波形(波形W31を積分した波形)であって、補正部24によって角度の境界条件を満た すように補正された波形を示している。グラフG32に示す時刻t1における角度は、補 正部24によって「 = 」となっている(補正されている)。また、グラフG32に 示す時刻t2における角度は、補正部24によって「 = 」となっている。 【0067】

図8は、積分部23が算出した角度のドリフト除去の例を説明する図である。図8に示 50

すグラフG41の横軸は、時間を示している。グラフG41の縦軸は、角度を示している。

【0068】

グラフG41の波形W41は、積分部23が算出した角度の波形であって、補正部24 によって角度の境界条件を補正しなかった場合の波形を示している。波形W41に示すよ うに、積分部23が算出した角度には、例えば、センサ2aのドリフト成分が含まれる。 【0069】

図7のグラフG32で説明したように、補正部24は、角度の境界条件を満たすように、積分部23が算出した角度を補正する。例えば、補正部24は、角度の境界条件を満たすように、積分部23が算出した角度の線形成分(斜線部分)を加算(または減算)する 10 ことで、センサ2aのドリフト成分の除去を行う。

【0070】

これにより、計測装置1は、外力が作用する強制応答区間の変位角度を適切に計測できる。すなわち、計測装置1は、車両通過や地震による橋梁4の変位角度を適切に計測できる。

【0071】

図9は、境界条件特定部22、積分部23、および補正部24の処理例を説明する図で ある。図9の最上部に示す「角速度」は、通信部12によって受信された、センサ2aが 検出した橋梁4の角速度を示している。通信部12によって受信された角速度は、図9に 示すように、2つの処理ルートR1,R2で処理される。左側の枝の処理ルートR1は、 境界条件特定部22の処理の流れを示す。右側の枝の処理ルートR2は、積分部23およ び補正部24の処理の流れを示す。

20

30

【0072】

図9の矢印A11に示すように、境界条件特定部22は、フィルタ処理によって、自由 振動周波数成分の角速度を抽出する。そして、境界条件特定部22は、矢印A12に示す ように、抽出した角速度を積分して、自由振動周波数成分の角度を算出する。

【0073】

境界条件特定部22は、矢印A13に示すように、算出した角度から、境界条件を特定 する。具体的には、境界条件特定部22は、外力情報取得部21によって取得された第1 の時刻(時刻t1)における角度 ¹と、第2の時刻(時刻t2)における角度 ²とを 、角度の境界条件とする。

[0074]

一方、積分部23は、図9の矢印A21に示すように、通信部12によって受信された 角速度を積分して、角度を算出する。補正部24は、矢印A22に示すように、積分部2 3が算出した角度を、境界条件特定部22が特定した境界条件を満たすように補正する。 具体的には、補正部24は、積分部23が算出した時刻t1の角度を、角度 1となるように補正し、積分部23が算出した時刻t2の角度を、角度 2となるように補正する。 【0075】

図3の説明に戻る。異常検出部25は、補正部24によって補正された角度から、橋梁 4の異常を検出する。例えば、異常検出部25は、補正部24によって補正された角度の 40 絶対値が、所定の閾値を超えている場合、橋梁4に異常が発生していると検出する。所定 の閾値は、例えば、橋梁4の線形変位する範囲の最も大きい値、またはそれより少し小さ い値とする。

【 0 0 7 6 】

図10は、計測装置1の動作例を示したフローチャートである。橋梁4に設置されたセンサ2aは、例えば、所定の周期で橋梁4に生じる角速度を計測し、計測した角速度を、 通信ネットワーク3を介して、計測装置1に送信するとする。そして、計測装置1の通信 部12は、センサ2aから送信された角速度を受信するとする。

【 0 0 7 7 】

外力情報取得部21は、通過検出装置5または地震計6から、第1の時刻および第2の 50

時刻(強制応答区間情報)を取得する(ステップS1)。

【 0 0 7 8 】

境界条件特定部22は、通信部12によって受信されたセンサ2aの角速度から、自由 振動周波数成分の角速度を抽出する(ステップS2)。

【0079】

境界条件特定部22は、ステップS2にて抽出した角速度を積分して、角度を算出する (ステップS3)。

[0080]

境界条件特定部22は、ステップS3にて算出した角度の、ステップS1にて取得され た第1の時刻における角度と、第2の時刻における角度とを、境界条件として特定する(10 ステップS4)。

【0081】

積分部23は、通信部12によって受信された角速度を積分して、角度を算出する(ス テップS5)。

【 0 0 8 2 】

補正部24は、ステップS5にて算出された角度を、ステップS4にて特定された境界 条件を満たすように補正する(ステップS6)。

【 0 0 8 3 】

[0084]

異常検出部25は、ステップS6にて補正された角度から、橋梁4の異常を検出する(ステップS7)。

20

30

40

このようにして、計測装置1は、橋梁4の異常を検出する。なお、計測装置1の動作は、図10の例に限定されない。例えば、ステップS1~S4の処理と、ステップS5,S6の処理は、同時に実行されてもよい。

【0085】

以上説明したように、境界条件特定部22は、車両が移動する橋梁4に設置されたセン サ2aによって測定された角速度から、橋梁4の自由振動周波数成分の角速度を抽出し、 抽出した角速度を積分して算出した角度から、角度の境界条件を特定する。積分部23は 、センサ2aによって測定された角速度を積分して、角度を算出する。補正部24は、積 分部23が算出した角度を、境界条件特定部22が特定した角度の境界条件を満たすよう に補正する。これにより、計測装置1は、橋梁4に生じる角速度から、角度を精度よく算 出することができる。

【0086】

また、計測装置1は、精度よく橋梁4の角度を算出できるので、橋梁4の異常を精度よ く検出することができる。

【0087】

また、境界条件特定部22は、抽出した角速度を積分して算出した角度の、橋梁4に外 力が作用したときの第1の時刻における角度と、橋梁に作用した外力が解除されたときの 第2の時刻における角度とを境界条件とする。これにより、計測装置1は、橋梁4の角度 を精度よく算出することができる。

【 0 0 8 8 】

また、センサ2 a として、3 軸の慣性センサを用いた場合、計測装置1 は、容易に橋梁 4 の角度を算出できる。例えば、1 軸の傾斜計を用いた場合、3 軸方向の傾斜を検出する ため、3 つ必要となる。しかし、3 軸の慣性センサを用いると、1 つのセンサで3 軸の角 速度を測定でき、計測装置1 は、容易に3 軸の角度を算出することができる。

【 0 0 8 9 】

なお、上記では、説明を簡単にするため、計測装置1は、センサ2aの角速度から角度 を算出したが、もちろん、センサ2b~2dの角速度から角度を算出してもよい。そして 、異常検出部25は、センサ2a~2dの角速度から算出された角度から、橋梁4の異常 を検出してもよい。例えば、異常検出部25は、センサ2a~2dの角速度から算出され

10

た角度から、1つでも所定の閾値を超える角度を検出した場合、橋梁4は異常であると検 出する。

【0090】

また、境界条件特定部22の自由振動周波数成分の角速度を抽出する周波数は、上記した2.0~5.0Hzに限られない。境界条件特定部22は、自由振動周波数成分の角速 度を抽出できればよく、例えば、通過帯域が2.0Hz以上のHPF(High Pass Filter)によって、自由振動周波数成分の角速度を抽出してもよい。

【0091】

また、上記では、計測装置1を、橋梁4に適用した例について説明したが、例えば、立体駐車場等の構造物にも適用することができる。

【0092】

また、構造物に移動体が近づいているとき、構造物に移動体の影響が生じることがある 。例えば、橋梁4に車両が近づいているとき、車両の移動による影響(例えば、振動)が 橋梁4に生じることがある。そこで、第1の時刻には、このような、移動体が構造物に進 入する前の時刻が含まれていてもよい。例えば、車両が橋梁4に進入した時刻より少し前 を、第1の時刻としてもよい。具体的には、車両が橋梁4に進入した時刻より0.1秒前 を、第1の時刻としてもよい。

【0093】

また、構造物から移動体が退出した後、少しの間、構造物に外力の影響が生じることが ある(移動体が退出した直後に、すぐに自由振動とはならないことがある)。例えば、車 20 両が橋梁4を退出した後、少しの間、橋梁4は、外力の影響を受けていることがある。そ こで、第2の時刻には、このような、構造物から移動体が退出した後の時刻が含まれてい てもよい。例えば、車両が橋梁4を退出した時刻より少し後を、第2の時刻としてもよい 。具体的には、車両が橋梁4から退出した時刻より0.1秒後を、第2の時刻としてもよいい。

[0094]

[第2の実施の形態]

第2の実施の形態では、計測装置は、第1の実施の形態と同様に橋梁に生じる角度を算 出するが、さらに、外力の作用によって生じる橋梁の加速度から、橋梁に生じる速度と変 位とを算出する。そして、計測装置は、外力によって生じる橋梁の角度、速度、および変 30 位から、橋梁の異常を検出する。

[0095]

なお、加速度から算出される変位とは、例えば、橋梁の撓みの垂直方向の大きさを示す 。例えば、車両が橋梁を通過すると、橋梁は、下方に撓む。変位は、その下方の撓みの、 垂直方向の大きさを示す。

【0096】

図11は、第2の実施の形態に係る計測装置30の機能ブロック構成例を示した図である。図11において、図3と同じものには同じ符号が付してある。

【0097】

図11に示す計測装置30は、図3に示した計測装置1に対し、通信部31と、速度変 40 位境界条件32と、速度変位積分部34と、速度変位補正部34と、異常検出部35とが 異なる。以下では、図3と異なる部分について説明する。

【0098】

なお、橋梁4には、角速度および加速度を検出するセンサが設置されている。このセン サは、例えば、1つで、3軸方向の角速度と3軸方向の加速度とを検出する、6軸の慣性 センサである。角速度および加速度を検出するセンサは、例えば、図2に示した橋梁4の 4隅の支承部に設置される。以下で述べるセンサは、特に断らない限り、角速度および加 速度を検出するセンサとする。

【0099】

通信部31は、通信ネットワーク3を介して、センサから、角速度および加速度を受信 50

する。センサから出力される角速度および加速度は、例えば、デジタル信号である。通信 部31は、センサから受信した角速度を、境界条件特定部22と積分部23とに出力し、 センサから受信した加速度を、速度変位境界条件特定部32と速度変位積分部33とに出 力する。

【0100】

速度変位境界条件特定部32は、境界条件特定部22と同様の処理を行うが、通信部3 1によって受信された加速度から、速度と変位との境界条件を特定とするところが異なる

【0101】

速度変位境界条件特定部32は、センサによって検出された加速度から、橋梁4の自由 10 振動周波数成分の加速度を抽出する。速度変位境界条件特定部32は、抽出した加速度を 積分して算出した速度と、その速度を積分して算出した変位とから、速度の境界条件と変 位の境界条件とを特定する。具体的には、速度変位境界条件特定部32は、抽出した自由 振動周波数成分の加速度を積分して速度を算出し、算出した速度の第1の時刻における速 度と、第2の時刻における速度とを、後述する速度変位積分部33の積分の、速度の境界 条件とする。また、速度変位境界条件特定部32は、算出した速度を積分して変位を算出 し、算出した変位の第1の時刻における変位と、第2の時刻における変位とを、後述する 速度変位積分部33の積分の、変位の境界条件とする。

【0102】

速度変位積分部33は、積分部23と同様の処理を行うが、通信部31によって受信さ 20 れた加速度から、速度と変位とを算出するところが異なる。

【0103】

速度変位積分部33には、通信部31によって受信された、センサの加速度が入力される。速度変位積分部33は、入力されたセンサの加速度を積分して、外力によって生じる橋梁4の速度を算出し、算出した速度をさらに積分して、外力によって生じる変位を算出する。

[0104]

速度変位補正部34は、速度変位境界条件特定部32によって特定された速度の境界条件を満たすように、速度変位積分部33によって算出された速度を補正する。また、速度 変位補正部34は、速度変位境界条件特定部32によって特定された変位の境界条件を満 たすように、速度変位積分部33によって算出された変位を補正する。 【0105】

30

異常検出部35は、補正部24によって補正された角度と、速度変位補正部34によっ て補正された変位とから、橋梁4の異常を検出する。例えば、異常検出部35は、補正部 24によって補正された角度の絶対値が、所定の閾値を超えている場合、または、速度変 位補正部34によって補正された変位の絶対値が、所定の閾値を超えている場合、橋梁4 に異常が発生していると検出する。

【0106】

図12は、速度変位境界条件特定部32、速度変位積分部33、および速度変位補正部 34の処理例を説明する図である。図12の最上部に示す「加速度」は、通信部31によ 40 って受信された、センサが検出した橋梁4の加速度を示している。通信部31によって受 信された加速度は、図12に示すように、2つの処理ルートR11,R12で処理される 。左側の枝の処理ルートR11は、速度変位境界条件特定部32の処理の流れを示す。右 側の枝の処理ルートR12は、速度変位積分部33および速度変位補正部34の処理の流 れを示す。

【0107】

図12の矢印A31に示すように、速度変位境界条件特定部32は、フィルタ処理によって、自由振動周波数成分の加速度を抽出する。そして、速度変位境界条件特定部32は、矢印A32に示すように、抽出した加速度を積分して、自由振動周波数成分の速度を算出する。

[0108]

速度変位境界条件特定部32は、矢印A33に示すように、算出した速度から、速度の 境界条件を特定する。具体的には、速度変位境界条件特定部32は、外力情報取得部21 によって取得された第1の時刻(時刻t1)における速度V1と、第2の時刻(時刻t2))における速度V2とを境界条件とする。

【0109】

また、速度変位境界条件特定部32は、矢印A34に示すように、算出した速度をさら に積分して、自由振動周波数成分の変位を算出する。

速度変位境界条件特定部32は、矢印A35に示すように、算出した変位から、変位の 10 境界条件を特定する。具体的には、速度変位境界条件特定部32は、外力情報取得部21 によって取得された第1の時刻(時刻t1)における変位U1と、第2の時刻(時刻t2))における変位U2とを境界条件とする。

[0111]

一方、速度変位積分部33は、図12の矢印A41に示すように、通信部12によって 受信された加速度を積分して、速度を算出する。速度変位補正部34は、矢印A42に示 すように、速度変位積分部33が算出した速度を、速度変位境界条件特定部32が特定し た、速度の境界条件を満たすように補正する。具体的には、速度変位補正部34は、速度 変位積分部33が算出した時刻t1の速度を、速度V1となるように補正し、速度変位積 分部33が算出した時刻t2の速度を、速度V2となるように補正する。

【0112】

速度変位積分部33は、図12の矢印A43に示すように、加速度を積分して算出した 速度をさらに積分して変位を算出する。速度変位補正部34は、矢印A44に示すように 、速度変位積分部33が算出した変位を、速度変位境界条件特定部32が特定した、変位 の境界条件を満たすように補正する。具体的には、速度変位補正部34は、速度変位積分 部33が算出した時刻t1の変位を、変位U1となるように補正し、速度変位積分部33 が算出した時刻t2の変位を、変位U2となるように補正する。

【0113】

以上説明したように、速度変位境界条件特定部32は、センサによって測定された加速 度から、橋梁4の自由振動周波数成分の加速度を抽出し、抽出した加速度を積分して算出 した速度と、その速度を積分して算出した変位とから、速度の境界条件と変位の境界条件 とを特定する。速度変位積分部33は、センサによって測定された加速度を積分して、速 度と変位とを算出する。速度変位補正部34は、速度変位積分部33が算出した速度を、 速度変位境界条件特定部32が特定した速度の境界条件を満たすように補正し、速度変位 積分部33が算出した変位を、速度変位境界条件特定部32が特定した変位の境界条件を 満たすように補正する。これにより、計測装置30は、橋梁4に生じる加速度から、速度 および変位を精度よく算出することができる。

[0114]

また、計測装置30は、精度よく橋梁4の速度および変位を算出できるので、橋梁4の 異常を精度よく検出することができる。

【0115】

また、計測装置30は、角度および変位を精度よく算出するので、橋梁4のねじれや撓 みの変形を精度よく取得することができる。

【0116】

また、速度変位境界条件特定部32は、抽出した加速度を積分して算出した速度と、その速度を積分して算出した変位との、橋梁4に外力が作用したときの第1の時刻における 速度および変位と、橋梁4に作用した外力が解除されたときの第2の時刻における速度お よび変位とを境界条件とする。これにより、計測装置30は、橋梁4の変位を精度よく算 出することができる。

【0117】

20

30

また、センサとして、3軸方向の角速度と3軸方向の加速度とを検出する6軸の慣性センサを用いた場合、計測装置30は、容易に橋梁4の角度、速度、および変位を算出できる。例えば、6軸の慣性センサからは、3軸方向の角速度と3軸方向の加速度とが出力されるので、計測装置30は、少ない数のセンサで、橋梁4の3軸方向の角度、速度、および変位を容易に算出できる。

【0118】

[第3の実施の形態]

地震の規模によっては、橋梁が崩落する場合がある。第3の実施の形態では、橋梁が崩落したとき、積分部および速度変位積分部は、積分処理を止める。また、速度変位補正部は、橋梁が崩落したとき、第2の時刻以降の速度をゼロに補正する。

【0119】

図13は、第3の実施の形態に係る計測装置40の機能ブロック構成例を示した図である。図13において、図11と同じものには同じ符号が付してある。

【0120】

図13に示す計測装置40は、図11に示した計測装置30に対し、積分部41と、速度変位積分部42と、速度変位補正部43とが異なる。以下では、図11と異なる部分について説明する。なお、第2の実施の形態と同様に、橋梁4には、角速度および加速度を検出するセンサが設置されている。

 $\begin{bmatrix} 0 & 1 & 2 & 1 \end{bmatrix}$

積分部41は、橋梁4に作用した外力の大きさに応じて、角度の算出を止める。例えば 20 、積分部41は、橋梁4に所定以上の外力が作用した場合、角度の算出を止める。 【0122】

【0122】

橋梁4に作用する所定以上の外力とは、例えば、橋梁4の崩落によって生じる外力であ る。例えば、橋梁4が地震によって崩落し、地面に衝突すると、橋梁4には、非常に大き な外力が作用する。つまり、言い換えれば、積分部41は、橋梁4が崩落したとき、角度 の算出を止める。積分部41は、例えば、通信部31によって受信された加速度が、所定 の閾値(橋梁4の崩落によって、橋梁4に生じるような加速度の値)より大きい場合、角 度の算出を止める。

【0123】

図14は、積分部41の動作例を説明する図である。図14に示すグラフG51の横軸 30 は、時間を示している。グラフG51の縦軸は、角度を示している。

【0124】

グラフG51に示す波形W51は、積分部41が算出する角度を示している。グラフG 51に示す時刻t1は、第1の時間を示し、時刻t11は、橋梁4が崩落した時刻を示す 。なお、橋梁4が崩落した時刻t11は、橋梁4に設置されたセンサによって検出される 加速度の大きさから分かる。例えば、橋梁4に設置されたセンサから、所定値以上の加速 度が検出されたときの時刻を、橋梁4が崩落した時刻t11とすることができる。

【0125】

積分部41は、グラフG51に示すように、橋梁4が崩落した時刻t11で、角度の算 出を止める。これにより、計測装置40は、例えば、地震等によって橋梁4が崩落したと 40 きの、橋梁4の変位角度を測定できる。

【0126】

図13の説明に戻る。速度変位積分部42は、橋梁4に作用した外力の大きさに応じて、変位の算出を止める。例えば、速度変位積分部42は、橋梁4に所定以上の外力が作用した場合、角度の算出を止める。

【0127】

橋梁4に作用する所定以上の外力とは、上記と同様に、例えば、橋梁4の崩落によって 生じる外力である。つまり、言い換えれば、速度変位積分部42は、橋梁4が崩落したと き、変位の算出を止める。速度変位積分部42は、例えば、通信部31によって受信され た加速度が、所定の閾値(橋梁4の崩落によって、橋梁4に生じるような加速度の値)よ

り大きい場合、変位の算出を止める。

【0128】

速度変位補正部43は、橋梁4に作用した外力の大きさに応じて、第2の時刻以降の速 度をゼロに補正する。例えば、速度変位補正部43は、橋梁4に所定以上の外力が作用し た場合、第2の時刻以降の速度をゼロに補正する。

【0129】

橋梁4に作用する所定以上の外力とは、上記と同様に、例えば、橋梁4の崩落によって 生じる外力である。つまり、言い換えれば、速度変位補正部43は、橋梁4が崩落した場 合、第2の時刻以降の速度をゼロにする。その理由は、橋梁4が地震によって地面に落下 し、その後地震がおさまると(第2の時刻以降になると)、橋梁4に生じる速度はゼロに なるからである。

【0130】

図15は、速度変位積分部42および速度変位補正部43の動作例を説明する図である。図15に示すグラフG61,G62の横軸は、時間を示している。グラフG61の縦軸は、速度を示し、グラフ62の縦軸は、変位を示している。

【0131】

グラフG61,G62に示す時刻t1は、第1の時刻を示す。グラフG61の時刻t2 は、第2の時刻を示す。グラフG62の時刻t11は、橋梁4が崩落した時刻を示す。な お、橋梁4が崩落した時刻t11は、例えば、橋梁4に設置されたセンサによって検出さ れる加速度の大きさから分かる。

【0132】

グラフG61に示す波形W61は、速度変位積分部42が算出する速度を示している。 速度変位積分部42は、グラフG61に示すように、橋梁4が崩落した時刻t11以降で あっても、速度を算出し続ける。そして、速度変位補正部43は、時刻t2以降の速度を 、ゼロに補正する。これは、橋梁4が地面に崩落し、その後地震がおさまると、橋梁4は 地面の上にあるため、橋梁4の速度はゼロになるからである。なお、時刻t11と時刻t 2の間は、まだ地震が発生していることを示している。

【0133】

グラフG62に示す波形W62は、速度変位積分部42が算出する変位を示している。 速度変位積分部42は、グラフG62に示すように、橋梁4が崩落した時刻t11で、変 30 位の算出を止める。これにより、計測装置40は、例えば、地震等によって橋梁4が崩落 したときの、橋梁4の変位を測定できる。

【0134】

以上説明したように、積分部41は、橋梁4に作用した外力の大きさに応じて、角度の 算出を止める。これにより、計測装置40は、例えば、地震等によって橋梁4が崩落した ときの、橋梁4の変位角度を測定できる。

【0135】

また、速度変位積分部42は、橋梁4に作用した外力の大きさに応じて、変位の算出を 止める。これにより、計測装置40は、例えば、地震等によって橋梁4が崩落したときの 、橋梁4の変位を測定できる。

【0136】

また、速度変位補正部43は、橋梁4に作用した外力の大きさに応じて、第2の時刻以降の速度をゼロに補正する。これにより、計測装置40は、地震等によって橋梁4が崩落したときの、橋梁4の適切な速度を出力することができる。

【0137】

以上、本発明について実施形態を用いて説明したが、計測装置の機能構成は、計測装置 の構成を理解容易にするために、主な処理内容に応じて分類したものである。構成要素の 分類の仕方や名称によって、本願発明が制限されることはない。計測装置の構成は、処理 内容に応じて、さらに多くの構成要素に分類することもできる。また、1つの構成要素が さらに多くの処理を実行するように分類することもできる。また、各構成要素の処理は、 20

10

1つのハードウェアで実行されてもよいし、複数のハードウェアで実行されてもよい。 【0138】

また、本発明の技術的範囲は、上記実施形態に記載の範囲には限定されない。上記実施 形態に多様な変更又は改良を加えることが可能であることが当業者には明らかである。例 えば、各実施の形態を組み合わせてもよい。また、そのような変更又は改良を加えた形態 も本発明の技術的範囲に含まれ得ることが、特許請求の範囲の記載から明らかである。ま た、本発明は、計測装置、計測方法、プログラム、当該プログラムを記憶した記憶媒体、 および計測システムとして提供することもできる。

【符号の説明】

10

【0139】

 1 計測装置、2a~2d センサ、3 通信ネットワーク、4 橋梁、5 通過検出 装置、6 地震計、11 制御部、12 通信部、13 記憶部、14 出力部、15 操作部、21 外力情報取得部、22 境界条件特定部、23 積分部、24 補正部、 25 異常検出部、30 計測装置、31 通信部、32 速度変位境界条件特定部、3 3 速度変位積分部、34 速度変位補正部、35 異常検出部、40 計測装置、41 積分部、42 速度変位積分部、43 速度変位補正部。

【図2】

【図9】

図8

【図10】

【図11】

【図14】

【図15】

フロントページの続き

 (56)参考文献
 特開 2 0 1 7 - 0 5 8 1 7 7 (J P , A)

 特開平 0 2 - 2 6 8 2 1 2 (J P , A)

 特開平 1 0 - 1 4 1 9 3 6 (J P , A)

 特開 2 0 0 8 - 1 3 4 1 8 2 (J P , A)

(58)調査した分野(Int.Cl., DB名)

G 0 1 B 2 1 / 3 2 E 0 1 D 2 2 / 0 0